

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2022- 2023 SEM: V SUBJECT: MATHEMATICS PAPER: C 11 T (PDE & APPLICATIONS)

Date: 20/09/2022

Maximum Marks: 10

ANSWER ANY ONE OF THE FOLLOWING

1. (a) Eliminate arbitrary constants from $z = (x - a)^2 + (y - b)^2$ to form the partial differential equation.

(b) Solve:
$$px + qy = z$$
, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.

(c) Solve:
$$y^2(x-y)p + x^2(y-x)q = z(x^2+y^2)$$
, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.

2 + 4 + 4

2. (a) Obtain a partial differential equation by eliminating a & b from the equation $az + b = a^2x + y$.

(b) Solve:
$$px - qy = xy$$
, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$.

(c) Solve:
$$(y + zx)p - (x + yz)q = x^2 - y^2$$
, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$

2 + 4 + 4

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2022- 2023 SEM: V SUBJECT: MATHEMATICS PAPER: C 12 T (GROUP THEORY II)

Date: 20/09/2022 Maximum Marks: 10

ANSWER ANY ONE OF THE FOLLOWING

- 1. (a) Let T be the group of all complex numbers ω such that $|\omega| = 1$. Show that $\mathbb{R}/_{\mathbb{Z}} \cong T$ where \mathbb{R} is the additive group of all real numbers.
 - (b) Find all homomorphism from $(\mathbb{Z}_6, +)$ into $(\mathbb{Z}_4, +)$.
 - (c) Show that $(\mathbb{Z}_9, +)$ is not a homomorphic image of $(\mathbb{Z}_{16}, +)$.

5 + 3 + 2

- 2. (a) Prove that $^{7\mathbb{Z}}/_{56\mathbb{Z}} \cong \mathbb{Z}_8$.
 - (b) Show that $GL(2,\mathbb{R})/SL(2,\mathbb{R}) \cong \mathbb{R}^*$.
 - (c) Prove that up to isomorphism there are only 2 groups of order 4.

2 + 3 + 5

INTERNAL EXAMINATION – 2022 SEM: V SUBJECT: MATHEMATICS PAPER: DSE – I (LINEAR PROGRAMMING PROBLEM AND GAME THEORY)

Date: 21/09/2022

Maximum Marks: 10

ANSWER ANY THREE OF THE FOLLOWING

- 1) Define the following
 - a. Decision variable
 - b. Slack variable and surplus variable
 - c. Objective function
 - d. Canonical form of a linear programming problem
- 2) Reduce the following L.P.P. into its standard form –

Maximize

$$Z = 2x_1 + 3x_2$$

Subject to

$$2x_1 + 3x_2 \le 300$$

$$x_1 + x_2 \le 300$$

$$x_1 + 3x_2 \ge 240$$

Where

$$x_1, x_2 \ge 0$$

3) Define basic feasible solution for a Linear Programming Problem. Determine a basic feasible solution for the following set of constraints connected to an objective function

$$x_1 + 2x_2 - x_3 = 9$$

$$2x_1 - x_2 + x_3 = 5$$

4) Define extreme point of convex set of feasible solutions corresponding to a Linear Programming Problem. Explain the geometrical interpretation of an extreme point.

JHARGRAM RAJ COLLEGE JHARGRAM 721507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2022 SEM: V SUBJECT: MATHEMATICS PAPER: DSE – II (PROBABILITY & SATISTICS)

Date: 21/09/2022 Maximum Marks: 10

ANSWER ANY THREE OF THE FOLLOWING

- 1) Define random experiment. Connected to a random experiment let *A* be an arbitrary event. Prove that the following
 - a. $0 \le P(A) \le 1$
 - b. $P(A^c) = 1 P(A)$
- 2) A fair coin is tossed twice. Determine the sample space connected to the random experiment as stated. Calculate the probability of the following events
 - a. Two heads
 - b. A head and a tail
- 3) Two urns containing balls at the following composition. A ball is drawn from the first urn and transferred to the second urn. Finally, a ball is drawn from the second urn. Calculate the probability that the ball drawn from the second urn is white.

Sl. No.	1 st Urn	2 nd Urn
01.	4 white balls	3 white balls
02.	5 black balls	6 black balls

4) Prove that for a pair of mutually exclusive events A, B connected to a random experiment, $P(A \cup B) = P(A) + P(B)$.

COLLEGE JHARGRAM RA

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION - 2022- 2023

SEM: III SUBJECT: MATHEMATICS PAPER: C5T (Theory of Real Functions & Introduction to Metric Space)

Date: 22/11/2022

Maximum Marks: 10

ANSWER ANY FOUR OF THE FOLLOWING

- 1. Show that $\lim_{x\to 0} x \cos \frac{1}{x} = 0$.
- 2. Show that $\lim_{x\to 0} \sin\frac{1}{x}$ does not exist in \mathbb{R} .
- 3. A function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2, \forall x \in \mathbb{R}$. Prove that f is continuous at every point of R.
- 4. A function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Prove that f is not continuous at every point of \mathbb{R} .

- 5. Let f be continuous on \mathbb{R} and let f(x) = 0 when $x \in \mathbb{Q}$. Prove that $f(x) = 0 \ \forall \ x \in \mathbb{R}.$
- 6. Find the point of discontinuity of the function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = [\sin x], \forall x \in \mathbb{R}.$

Department

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2022- 2023 SEM: III SUBJECT: MATHEMATICS PAPER: C 6 T (GROUP THEORY I)

Date: 22/11/2022

Maximum Marks: 10

ANSWER ANY ONE OF THE FOLLOWING

- 1. (a) Let G be a group and $a, b \in G$, suppose that $a^2 = e \& ab^4a = b^7$, prove that $b^{33} = e$.
 - (b) Let G be a group. If for all elements a, b, c of $G, ab = ca \Rightarrow b = c$ then show that G is a commutative group.
 - (c) If $\beta \in S_7$ & $\beta^4 = (2 1 4 3 5 6 7)$ then find β .

5 + 2 + 3

- 2. (a) Prove that any finitely generated subgroup of $(\mathbb{Q}, +)$ is cyclic.
 - (b) Compute $(3\ 5)(1\ 2\ 4\ 5)(2\ 3\ 1\ 5)$ in S_5 .
 - (c) Let H be a subgroup of a group G. Show that for any $g \in G$, $K = gHg^{-1} = \{ghg^{-1} : h \in H\}$ is a subgroup of G and |K| = |H|.

3 + 2 + 5

Department

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

SEM: III

INTERNAL EXAMINATION – 2022 SUBJECT: MATHEMATICS PAPER: C 7 T 7 (NUMERICAL METHODS)

Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

- 1) State the necessary and sufficient condition for convergence of the Gauss Jacobi Iteration method for solving a system of simultaneous linear algebraic equations.
- 2) State and prove the convergence of the Gauss-Seidel Iterative method.
- 3) Justify whether Gauss-Seidel Iterative method is applicable to solve the following system of equations or not –

$$x + y + 4z = 9$$

 $8x - 3y + 2z = 20$
 $4x + 11y - z = 33$

- 4) Bisection method is also known as the root-bracketing method. Justify the statement.
- 5) State and prove the condition of convergence for Newton Raphson method for solving a non linear or transcendental equation.
- 6) Determine the positive roots of the equation $x^3 3x + 1.06 = 0$, by method of Bisection correct to three places of decimal.
- 7) For finding the square root of 'a' (a > 0) derive the following iteration formula $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$, n = 0,1,2,3,... Where $x_0 (> 0)$ is any initial approximation to the actual root and x_n is the nth approximation.
- 8) Establish the convergence criterion for Regula Falsi method.
- 9) Solve the following system of linear equations by Gauss Seidel iterative method -

$$8x + 2y - 2z = 8$$
$$x - 8y + 3z = -4$$
$$2x + y + 9z = 12$$

SEM: III

INTERNAL EXAMINATION – 2022

SUBJECT: MATHEMATICS

PAPER: SEC – I (LOGIC AND SETS)

Date: 23/11/2022

Maximum Marks: 10

ANSWER ANY THREE OF THE FOLLOWING

- 1) Define the following and explain with examples
 - a. Disjunction
 - b. Conjunction
 - c. Exclusive disjunction
 - d. Negation of a proposition
- 2) Construct the truth table of the following propositions
 - i. $p \vee q$
 - ii. $p \oplus q \wedge r$
- 3) Verify that $p \land q \land \sim p$ is a contradiction and $p \to q \leftrightarrow \sim p \lor q$ is a tautology.
- **4)** Let T denote a tautology (i.e. a statement whose truth value is always true) and F a contradiction. Then, for any statement p, show that
 - i. $p \vee T = T$
 - ii. $p \wedge T =$
- 5) Give an example, with justification, of a compound proposition that is neither a tautology nor a contradiction.

INTERNAL EXAMINATION – 2022- 2023
SEM: I SUBJECT: MATHEMATICS PAPER: C1T (Calculus, Geometry & Differential Equation)

Date: 02/12/2022 Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

- 1. If $y = \frac{x}{1+x}$, Show that $y_5(0) = 5!$
- 2. Find the radius of curvature of $y^2 = 4x$ at the vertex.
- 3. When the axes are turned through an angle, the expression (ax + by) becomes (a/x/ + b/y/) referred to new axes. Show that $a^2 + b^2 = (a/)^2 + (b/)^2$.
- 4. Obtain the equation of the circle lying on the sphere $x^2 + y^2 + z^2 2x + 2y 4z + 3 = 0$ and having its centre at the point (2,2,-3).
- 5. Show that the equation $(a^2 + b^2)(x^2 + y^2) = (ax + by ab)^2$ represents a parabola of latus rectum $\frac{2ab}{\sqrt{a^2+b^2}}$.
- 6. Determine the values of a & b such that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1$.
- 7. Solve: $\frac{dy}{dx} + \frac{y}{x} \ln y = \frac{y}{x^2} (\ln y)^2$
- 8. Solve: $xdx + ydy + \frac{xdy ydx}{x^2 + y^2} = 0$

Departmen

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION - 2022 SEM: I SUBJECT: MATHEMATICS PAPER: C - II (ALGEBRA)

Maximum Marks: 10 Date: 02.12.2022

ANSWER ANY FIVE OF THE FOLLOWING QUESTIONS

- 1. Find the least positive value of the expression 567x + 315y + 30z, $x, y, z \in \mathbb{Z}$.
- 2. Let V(R) be the vector space of all polynomial functions in x with real coefficients. The linear operators D, T on V(R) are defined as – $D[f(x)] = \frac{df(x)}{dx}$ and $T[f(x)] = \int_0^x f(x)dx$ for all $f(x) \in V(R)$. Show that DT = I.

Is D one - one?

- 3. If (α, β, γ) , (δ, ε) be the ordered bases of the vector spaces U, V respectively and $T: U \to V$ be a linear transformation such that $T(\alpha) = \delta - 2\varepsilon$, $T(\beta) = \gamma + 3\varepsilon$, $T(\gamma) = 0$ $2\delta + \varepsilon$. Determine the matrix representation of the transformation T relative to the bases $(\alpha, \beta, \beta + \gamma)$ of U and $(\delta - \varepsilon, \varepsilon)$ of V.
- 4. Prove that $arg(z) arg(-z) = \pm \pi$ according as arg(z) > 0 and arg(-z) < 0.
- 5. Prove that $Re(z) + Im(z) \le \sqrt{2}z$
- 6. Prove by the method of induction $2.7^n + 3.5^n 5$ is divisible by 24.
- 7. Compute the matrix $E_{23}E_1(2)E_{12}(-2)E_{21}$ for elementary matrix of order 4.
- 8. Reduce the following matrix to row reduced echelon form –

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix}$$

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2022- 2023
SUBJECT: MATHEMATICS PAPER: C 13 T (METRIC SPACE AND COMPLEX ANALYSIS)

Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

- 1. Let (X, d) be a metric space. Define $d^*(x, y) = \frac{d(x, y)}{1 + d(x, y)}$, for all $x, y \in X$. Prove that d^* is a bounded metric on X.
- 2. Show that the following conditions

a.
$$d(x, y) = 0$$
 iff $x = y (x, y \in X)$

b.
$$d(x,z) \le d(x,y) + d(y,z)$$
. $\forall x, y, z \in X$

are not sufficient to ensure that the mapping $d: X \times X \to \mathbb{R}$ is a metric on the set X.

- 3. Prove that a subset A of a metric space (X, d) is open iff $A \cap db(A) = \varphi$.
- 4. Show that a real valued function f on a metric space (X, d) is continuous if and only if for each $a \in \mathbb{R}$, $\{x \in X : f(x) > a\}$ and $\{x \in X : f(x) < a\}$ are open sets in X.
- 5. Show that a surjection $f:[a,b] \to B(B \subseteq \mathbb{R})$, where B is not closed in \mathbb{R} cannot be continuous.
- 6. Let u and v denote the real and imaginary components of the function f defined by means of the equations

$$f(z) = \begin{cases} \frac{\overline{z}^2}{z}, & \text{when } z \neq 0\\ 0, & \text{when } z = 0 \end{cases}$$

Verify that the Cauchy – Riemann equations are satisfied at the origin z = (0,0).

- 7. Let a function f be analytic everywhere in a domain D. Prove that if f(z) is real-valued for all $z \in D$ then f(z) must be constant throughout D.
- 8. Show that u(x, y) is harmonic in some domain and find a harmonic conjugate v(x, y) when u(x, y) = 2x(1 y).

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – VI, INTERNAL ASSESSMENT, 2022-23 Sub: MATHEMATICS, Course - C14T

Marks: 10

ver any five questions:

Time: 30 m. $(2 \times 5 = 10)$

Find all the ideals of the ring $\mathbb{Z}[x]/(2, x^3 + 1)$

of W.B.Y 2. Finall irreducible polynomials of degree 3 in $\mathbb{Z}_2(x)$.

3. Examine if the polynomial $x^2 + 4x - 2$ is irreducible over $\mathbb{Q}[x]$.

4. Let V = C([0,1]) and define $\langle f, g \rangle = \int_0^{\frac{1}{2}} f(t)g(t)dt$. Is this an inner product on V?

5. Apply the Gram-Schmidt process to the vectors (1,0,1), (1,0,-1), (0,3,4) to obtain an orthonormal basis for \mathbb{R}^3 wi

5. Let $V = \mathbb{R}^2$ and $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by T(x) = (2x - 2y, -2x + 5y), then show that T is self-adjoint operator.

7. Show that the matrix $\begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$ is diagonalisable.

8. Let $\beta = \{(2,1), (3,1)\}$ be an ordered basis for \mathbb{R}^2 . Find the dual basis of β .

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2022- 2023 SEM: VI SUBJECT: MATHEMATICS PAPER: DSE3T (Number Theory)

Date: 30/05/2023 Maximum Marks: 10

ANSWER ANY ONE OF THE FOLLOWING

- 1. (a) For any integer n>1 prove that $\tau(n)\leq 2\sqrt{n}$, where $\tau(n)$ is number of positive divisor of n.
 - (b) Prove that if $n \ge 1$ then $\frac{(2n)!}{(n!)^2}$ is an even integer.
 - (c) Prove that if gcd(a, n) = gcd(a 1, n) = 1, then $1 + a + a^2 + \dots + a^{\varphi(n)-1} \equiv 0 \pmod{n}.$

3 + 3 + 4

- 2. (a) Prove that for n > 1, the sum of the positive integers less than n and relatively prime to n is $\frac{n\varphi(n)}{2}$.
 - (b) Verify that 1000! terminates in 249 zeros.
 - (c) If f is a multiplicative function then prove that $\sum_{d|n} f(d)$ is also a multiplicative function.

3 + 2 + 5

SEM: VI SUBJECT: MATHEMATICS PAPER: DSE – 4 (MATHEMATICAL MODELLING)

Maximum Marks: 10

ANSWER THE FOLLOWING QUESTIONS

- 1. Show that $L(e^{\alpha t}t^{\alpha}) = \frac{\Gamma(\alpha+1)}{(s-a)^{\alpha+1}}$.
- 2. An object having mass m is initially at rest and receives a blow, or impulse, of strength P at t=0, t=a, t=2a etc. The equation may be written

$$m\frac{dv}{dt} = P[\delta(t) + \delta(t-a) + \delta(t-2a) + \cdots \dots]$$

Find the velocity as a function of time.

- 3. Solve the following differential equation $x^{1/2}(t) + 4x(t) = e^t$ subject to the initial conditions x(0) = 0 and $x^2(0) = 1$ by application of Laplace transform.
- 4. Solve the following differential equation by power series solution $\frac{d^2y}{dx^2} + y = 0.$

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

SEM: II

INTERNAL EXAMINATION – 2023 ACADEMIC YEAR : 2022 - 2023 SUBJECT: MATHEMATICS

PAPER: C3T

Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

- 1. If $a \in R$ and $0 \le a < \frac{1}{n}$ for every natural number n, prove that a = 0.
- 2. Find Sup A and Inf A, Where $A = \left\{ \frac{n + (-1)^n}{n}; n \in \mathbb{N} \right\}$.
- 3. Prove that the set $S = \{x \in R : Sinx \neq 0\}$ is an open set.
- 4. Show that a finite set has no limit point.
- 5. Prove that the set $\left\{\frac{1}{m} + \frac{1}{n} : m \in \mathbb{N}, n \in \mathbb{N}\right\}$ is closed in \mathbb{R} .
- 6. Show that the $\{x_n\}$ sequence is a Null sequence, where $x_n = \frac{n!}{n^n}$
- 7. Use Sandwich Theorem to prove that $\lim \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2} \right] = 0.$

INTERNAL EXAMINATION - 2022- 2023

SEM: II SUBJECT: MATHEMATICS

PAPER: C 4 T (Differential Equation & Vector Calculus)

Date: 25/07/2023

Maximum Marks: 10

ANSWER ANY ONE OF THE FOLLOWING

1. (a) Determine the 1st three approximated solutions of the following Initial Value Problem (IVP) –

$$\frac{dy}{dx} = 2y, y(0) = 1$$

(b) Show that the following differential equation –

$$(D^4 - D^3 - 3D^2 + 5D - 2)y = 0, D = \frac{d}{dx}$$

has only two linearly independent solutions of the form $y = e^{mx}$. But verify that $y = e^x$, $y = xe^x$, $y = x^2e^x$, $y = e^{-2x}$ are four linearly independent solutions of the given equation. Hence write down the complete solution.

(c) If $\vec{a} \& \vec{b}$ be two non collinear vectors such that $\vec{a} = \vec{c} + \vec{d}$ where \vec{c} is a vector parallel to $\vec{b} \& \vec{d}$ is a vector perpendicular to \vec{b} , then obtain expressions for $\vec{c} \& \vec{d}$ in terms of $\vec{a} \& \vec{b}$.

4 + 3 + 3

2. (a) Solve the following differential equation by the method of variation of parameters

$$\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} - \frac{1}{x^2}y = \log x \ (x > 0)$$

it being given that y = x and y = 1/x are two linearly independent solutions of its reduced equation.

(b) Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a} \ \vec{b} \ \vec{c}]^2$

(c) Solve the following differential equation –

$$\frac{dx}{y^2 + yz + z^2} = \frac{dy}{z^2 + zx + x^2} = \frac{dz}{x^2 + xy + y^2}$$

3 + 2 + 5

DEPARTMENT OF MATHEMATICS

SEM: IV

INTERNAL EXAMINATION - 2023 ACADEMIC YEAR: 2022 - 2023 SUBJECT: MATHEMATICS

PAPER: C8T

Maximum Marks: 10

ANSWER ANY FOUR OF THE FOLLOWING

1. A function f is defined by [0,1] by

$$f(0) = 0$$

$$f(x) = (-1)^{r-1}, \frac{1}{r+1} < x \le \frac{1}{r}, \text{ for } r = 1,2,3 \dots$$

Show that f is integrable on $[0,1]$

- 2. Let f(x) = [x], $x \in [0,3]$. Evaluate $\int_0^3 f$.
- 3. A function f is defined by [0,1] by

$$f(x) = sinx, x$$
 is rational.

$$= x$$
, x is irrational.

Show that f is not integrable on $0, \frac{\pi}{2}$

- 4. Let $f_n(x) = x^{n-1} x^n$, $x \in [0,1]$. Prove that the sequence $\{f_n\}$ is uniformly convergent on [0,1].
- 5. Let $f_n(x) = \frac{nx}{1+nx}$, $x \in [0,1]$. Show that the sequence $\{f_n\}$ is not uniformly convergent on[0,1].
- 6. Let $f_n(x) = x^2 e^{-nx}$, $x \in [0, \infty]$. Show that the sequence $\{f_n\}$ is uniformly convergent on $[0, \infty]$.

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2022- 2023 SEM: IV SUBJECT: MATHEMATICS PAPER: C 9 T (Multivariable Calculus)

Date: 24/07/2023 Maximum Marks: 10

ANSWER ANY ONE OF THE FOLLOWING

1. (a) Let $f(x) = \begin{cases} \frac{x^2y^2}{x^2+y^2}, & x^2+y^2 \neq 0 \\ 0, & x^2+y^2=0 \end{cases}$ Show that $f_{xy}(0,0) = f_{yx}(0,0)$ although f does not satisfy conditions of Schwarz's theorem.

- (b) Check that whether $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x-y}$ exists or not.
- (c) Change the order of integration & hence evaluate $\int_{2}^{4} \int_{\frac{4}{x}}^{\frac{20-4x}{8-x}} (4-y) dy dx$

5 + 2 + 3

- 2. (a) Show that $f(x, y) = \sqrt{|xy|}$ is not differentiable at (0,0).
 - (b) Compute $\iint \frac{2x^2+y^2}{xy} dxdy$ taken over the area in the positive quadrant of the xy plane bounded by the curves $x^2 + y^2 = h^2$, $x^2 + y^2 = k^2$, $y^2 = 4ax$, $y^2 = 4bx$, a, b > 0
 - (c) Evaluate $\iiint z^2 dx dy dz$ over the region E common to the surfaces $x^2 + y^2 + z^2 = a^2 \& x^2 + y^2 = ax$.

3 + 2 + 5

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION - 2022- 2023 PAPER: C 10 T (RING THEORY AND LINEAR SEM: IV SUBJECT: MATHEMATICS ALGEBRA - I)

Maximum Marks: 10 Date: 25/07/2023

ANSWER ANY ONE OF THE FOLLOWING

- 1. If (R, +, .) Be a ring such that (R, +) is a cyclic group, prove that the ring is a commutative ring. Also, deduce that a ring of prime number of elements is always commutative ring.
- 2. Let (R, +, .) Be a ring with unity element I and $a \in R$. If there exists a unique element $b \in R$ such that ab = I, prove that ba = I too and a is a unit.
- 3. Let D is an integral domain in which the identity element is the only element which is its own inverse. Prove that the characteristic of D is 2.
- 4. Let a be a fixed element in a ring (R, +, .) and let $C(a) = \{x \in R : xa = ax\}$. Prove that C(a) is a subring of (R, +, .).
- 5. Let α_1 , α_2 , α_3 are vectors in real vector space V such that $\alpha_1 + \alpha_2 + \alpha_3 = 0$. Prove that $L(\alpha_1, \alpha_2) = L(\alpha_2, \alpha_3) = L(\alpha_1, \alpha_3).$
- 6. Let V be a real vector space with a basis $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Examine if $\{\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_4, \dots, \alpha_n\}$. $\alpha_3, \ldots, \alpha_n + \alpha_1$ is also a basis of V.
- 7. Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ that maps the basis vectors (0,1,1), (1,0,1), (1,1,0) of \mathbb{R}^3 to the vectors (2,1,1), (1,2,1), (1,1,2) respectively. Find also the kernel and image of the transformation.
- 8. Let T be a linear operator on a vector space V over a field F. Prove that
 - $Ker(T) \subset Ker(T^2)$
 - $Im(T^2) \subset Im(T)$

DEPARTMENT OF MATHEMATICS

SEM: IV

irtment

Date:

athematics

INTERNAL EXAMINATION - 2022- 2023 SUBJECT: MATHEMATICS PAPER: SEC 2 (GRAPH THEORY)

25/07/2023

Maximum Marks: 5

ANSWER ANY THREE OF THE FOLLOWING

- 1. Show that a complete graph with n vertices consists of $\frac{n(n-1)}{2}$ edges.
- 2. Let G be a simple graph with at most 2n vertices. If the degree of each vertex is at least n, then show that the graph is connected.
- 3. Let G be a graph and u, v be two vertices of G such that $u \neq v$. If there is a trail from u to v, then show that there is a path from u to v.
- 4. Prove that a graph has a circuit if the degree of each vertex is an even positive integer.

I.A. / Paper – SEC 2 / 2022-23